On the Ehrenfeucht Conjecture for DOL Languages

نویسندگان

  • Karel Culik
  • Juhani Karhumäki
چکیده

— Ehrenfeucht conjectured that each language L over a finite alphabet E possesses a test set, that is a finite subset F of L such that every two morphisms on E* agreeing on each string in F also agree on each string in L. We introducé the notion of déviation of a string with respect to a language and use it to give a sufficient condition for the existence of such a test set. Moreover, we prove that a test set effectively existsfor each positive DOL language. The well known open problem whether this holdsfor every DOL language remains open. Resumé. — Ehrenfeucht a énoncé la conjecture suivante : chaque langage L sur un alphabet fini S possède un ensemble de test, c'est-à-dire une partie finie F de L telle que deux morphismes quelconques sur S*, qui coïncident sur les mots de F, coïncident aussi sur les mots de L. Nous introduisons la notion de déviation d'un mot par rapport à un langage et nous l'utilisons pour donner une condition suffisante à l'existence d'un ensemble de test. Déplus, nous démontrons qu'un ensemble de test existe effectivement pour tout langage DOL positif Le problème ouvert bien connu, de savoir si ceci est vrai pour tout langage DOL, reste ouvert.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Subword Complexities of Homomorphic Images of Languages

— The subword complexity of a language K is the function nK on positive integer s such that nK (n) equals the number of different subwords of length n appearing in words of X. We investigate the relationship between nk(K) and nK where Kis a language and h is a homorphism. This study is aiso carried out for the special case when Kis a DOL language. Resumé. — La complexité des facteurs d'un langa...

متن کامل

On Cancellation Properties of Languages which are Supports of Ration Power Series

In this paper, we study properties of supports, that is, formal languages that are supports of rational power series. We answer affirmatively a conjecture quoted in [ 141: if two supports are complementary, then they are regular languages (Theorem 3.1). Secondly we solve, for this special class of languages, the Ehrenfeucht conjecture (cf. [9]): g iven a language it contains some finite test se...

متن کامل

Normality of the Ehrenfeucht-Mycielski Sequence

We study the binary Ehrenfeucht Mycielski sequence seeking a balance between the number of occurrences of different binary strings. There have been numerous attempts to prove the balance conjecture of the sequence, which roughly states that 1 and 0 occur equally often in it. Our contribution is twofold. First, we study weaker forms of the conjecture proved in the past and lay out detailed proof...

متن کامل

New Techniques for Proving the Decidability of Equivalence Problems

We will discuss severai recentI) developed :e_h.ci;ues for prcving the decidability of the equivalence problem for devices den #III& languages and relations. Most of these techniques come from the development originat,d 1;1 the proof of the decidability of the DOL equivalence problem. Of particular importance is c.te recently shown validity of the Ehrenieucht conjecture and its effective variat...

متن کامل

LoLa: A Modular Ontology of Logics, Languages, and Translations

The Distributed Ontology Language (DOL) is currently being standardised within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3. It aims at providing a unified framework for (1) ontologies formalised in heterogeneous logics, (2) modular ontologies, (3) links between ontologies, and (4) annotation of ontologies. This paper focuses on building an ontology that fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ITA

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1983